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Abstract storage. Overwrites in the write-behind cache can in-

crease the front-end write traffic supported by the array,

Modern high-end disk arrays often have several gigabut do notintrinsically increase the size of cache needed.
bytes of cach&AM. Unfortunately, most array caches

use management policies which duplicate the same datdnfortunately, there i§ no such simple bound for the size
blocks at both the client and array levels of the cache hi®f the re-read cache: in general, the larger the cache, the
erarchy: they arénclusive Thus, the aggregate cache greater the benefit, until some point of diminishing re-

behaves as if it was only as big as the larger of the clienfuns IS reached. The common rule of thumb is to try to
and array caches, instead of as large as the sum of tHgdche about 10% of the active data. Table 1 suggests that

two. Inclusiveness is wasteful: cackeM is expensive. thiS is @ luxury out of reach of even the most aggressive
cache configurations if all the stored data were to be ac-

We explore the benefits of a simple scheme to achievgve. Fortunately, this is not usually the case: a study of
exclusive cachingn which a data block is cached at ei- UNIX file system workloads [31] showed that the mean

ther a client or the disk array, but not both. Exclusivenessyorking set over a 24 hour period was only 3—7% of the

helps to create the effect of a single, large unified cacheotal storage capacity, and the 90th percentile working
We introduce @EMOTE operation to transfer data eject- set was only 6-16%. A study of deployed HP AritoD

ed from the client to the array, and explore its effective-systems [43] found that the working set rarely exceeded

ness with simulation studies. We quantify the benefitshe space available fevaip1 storage (about 10% of the
and overheads of demotions across both synthetic angtal storage capacity).

real-life workloads. The results show that we can obtain ) i
useful—sometimes substantial—speedups. Both array and client re-read caches are typically oper-
ated using théeast-recently-use(L.RU) cache replace-
During our investigation, we also developed some newnent policy [11, 12, 35]; even though many proprietary
cache-insertion algorithms that show promise for multi-tweaks are used in array caches, the underlying algo-
client systems, and report on some of their properties. rithm is basically LRU [4]. Similar approaches are the

norm in client-server file system environments [15, 27].

1 Introduction Interactions between the LRU policies at the client and
array cause the combined caches tartmtusive the ar-

Disk arrays use significant amounts of cachem t0 5y (Jower-level) cache duplicates data blocks held in the
improve performance by allowing asynchronous read<jient (upper-level) cache, so that the array cache is pro-
ahead and write-behind, and by holding a pool of data

that can be re-read quickly by clients. Since the per- High-end arrays

gigabyte cost oRAM is much higher than of disk, cache System | Cachd Disk spacs
can represent a significant portion of the cost of modern ETACE?SO gg g:: ;gl:
arrays. Our goal here is to see how best to exploit it. HP XP512 32:is 9278
The cache sizes needed to accomplish read-ahead and High-end servers
write-behind are typically tiny compared to the disk ca- System |Mem9ry| - Type €PLS)
. . . IBM z900 64 cis| High-end (1-16
pacity of the array. Read-ahead can be efficiently han- Sun E10000 | 64cis| High-end (464
dled with buffers whose size is only a few times the HP Superdomgl28cis| High-end (8-64
track size of the disks. Write-behind can be handled with HP rp8400 64cis | Mid-range (2-16
buffers whose size is large enough to cover the variance HP rp7400 | 32cie| Mid-range (-8

(burstiness) in the write workload [32, 39], since the SUS~raple 1: Some representative maximum-supported sizes for

tained average transfer rate is bounded by what the diskgg arrays and servers from early 200%i — 2% bytes.
can.support—everything.eventually has to get to stable
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viding little re-read benefit until it exceeds the effective NONE  DEMOTE  DEMOTE

size of the client caches. LRU LRU

LRU LRU LRU
Inclusiveness is wasteful: it renders a chunk of the array '+ ] T . Read
cache similar in size to the client caches almost useless. i :\ ---—= Demote
READ operations that miss in the client are more likely LRU LRU LRU
to miss in the array and incur a disk access penalty. For —
example, suppose we have a client withdof cache T

memory connected to a disk array with &® of re-

read cache, and suppose the workload has aretab Figure 1: Sample cache management schemes. The top and
working set size of 32B. (This single client, single bottom boxes represent the client and array cache replacement
array case is quite common in high-end computer instaldueues respectively. The arrow in a box points to the end clos-
lations; with multiple clients, the effective client cache €St to being discarded.

size is equal to the amount of unique data that the clients, . o :
)%nllke a WRITE, the array short-circuits the operation

I.e., it does not transfer the data) if it already has a copy

of the block cached, or if it cannot immediately make
pace for it. In all cases, the client then discards the
lock from its own cache.

caches hold, and the same arguments apply.) We mig
naively expect the 328 of available memory to capture
almost all of the re-read traffic, but in practice it would
capture only about half of it, because the array cache wil
duplicate blocks that are already in the client [15, 27].
Clients are trusted to return the same data that they read
earlier. This is not a security issue, since they could eas-
ily issue awRITE to the same block to change its con-
tents. If corruption is considered a problem, the array
1.1 Exclusive caching could keep a cryptographic hash of the block and com-
pare it with a hash of the demoted block, at the expense

Achieving exclusive caching requires that the client andof more metadata management and execution time.
array caches be managed as one. Since accesses to

the client cache are essentially free, while accesses t8ANS are fast and disks are slow, so thougheaioTe

the array cache incur the round-trip network delay, théMy incur a SAN block transfer, performance gains are

cost of an /0 operation at the client, and the controllerStill possible: even small reductions in the array cache
overheads at the array, we can think of this setup as 9SS rate can achieve (_jramanc reductions in the mean
cache hierarchy, with the array cache at the lower levelREAD latency. Our goal is to evaluate how close we can

These costs are not large: modern storage area networR§t 10 this desirable state of affairs and the benefits we
(SANSs) provide 1-2 Gbit/s of bandwidth per link, and obtain fromit.

I/O overheads of a few hundred microseconds; thus, re—1 2 Exclusive caching schemes
trieving a 4kB data block can take as little as 0.2 ms. ’

However, it would be impractical to rewrite client O/S The addition of aDEMOTE operation does not in itself
and array software to explicitly manage both caches. Iyield exclusive caching: we also need to decide what
would also be undesirable for the array to keep track othe array cache does with blocks that have just been de-
precisely which blocks are in the client, since this meta-moted or read from disk. This is primarily a choice of
data is expensive to maintain. However, we can approxcache replacement policy. We consider three combina-
imate the desired behavior by arranging that the clientions of demotions with different replacement policy at
(1) tells the array when it changes what it caches, andhe array, illustrated in figure 1; all use the LRU policy
(2) returns data ejected from the upper-level cache to that the client:

lower-level one, rather than simply discarding it.

To avoid these difficulties, it would be better to arrange
for the combined client and array caches tekelusive
so that data in one cache is not duplicated in the other.

e NONE-LRU (the baseline scheme): clients do no de-
motions; the array uses the LRU replacement policy
for both demoted and recently read blocks.

We achieve the desired behavior by introducinge
MOTE operation, which one can think of as a possible
extension to thescsicommand setDEMOTE works as
follows: when a client is about to eject a clean block
from its cache (e.g., to make space forBAD), it first
tries to return the block to the array usingpaMOTE.

A DEMOTE operation is similar to avRITE operation:
the array tries to put the demoted block into its re-read e DEMOTE: clients do demotions; the array puts
cache;ejectinganotherblockifhecessary to make space. blocks it has sent to a client at the head (closest to

e DEMOTE-LRU: clients do demotions; the array uses
the traditional LRU cache management for both de-
moted and recently read blocks.
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being discarded end) of its LRU queue, and putsde2 Why exclusive caching?

moted blocks at the tail. This scheme most closely

approximates the effect of a Sing|e unified LRU In this section, we explore thgotentialbenefits of ex-
cache. clusive caching in single-client systems, using a simple
analytical performance model. We show that exclusive
caching has the potential to double the effective cache
size with client and array caches of equal size, and that
tgle potential speedups merit further investigation.

We observe that theEMOTE scheme is more exclusive
than theDEMOTE-LRU scheme, and so should result in
lower mean latencies. Consider what happens when
client READ misses in the client and array caches, andWe begin with a simple performance model for estimat-
thus provokes a back-end disk read. Wi#tMOTE-LRU, ing the costs and benefits of caching. We predict the
the client and array will double-cache the block until mean latency seen by a client application as

enough subsequeREADs miss and push it out of one

of the caches (which will take at least as m&mBADS as

the smaller of the client and array queue lengths). With 1 — Tch. + (Ta+ To) ha + (Ta+ To+T,) miss (1)
DEMOTE, the double-caching will only last only until the

nextREAD that misses in the array cache. We thus ex- hereT. andT. ts of a hitin the client and disk
pectDEMOTE to be more exclusive thamEMOTE-LRU, wherelc andla are costs oranitin the client and disk ar-

and so to result in lower meaEAD latencies. ray caches respectively, is the cost of reading a block
from disk (since such a block is first read into the cache,
1.3 Objectives and then accessed from there, it also inClyrs Te), he
andhy are the client and array cache hit rates respec-
To evaluate the performance of our exclusive caching aptively (expressed as fractions of the total cli&®ADs),

proach, we aim to answer the following questions: andmiss= 1— (hc+ ha) is the miss rate (the fraction of
all READs that must access the disk). Sifigex 0,

1. Do demotions increase array cache hit rates in
single-client systems?
Tmean® Taha+ (Ta+ Ty) miss 2
2. If so, what is the overall effect of demotions on
mean latency? In particular, do the costs exceeq, practice, T, is much less thaf;: Ta ~ 0.2 ms and
the benefits? Costs include extra SAN transfers, as- d

- ) 4 ~ 4-10 ms for non-sequential<d reads.
well as delays incurred byeADs that wait forDE-
MOTES to finish before proceeding. We must also account for the cost of demotions. Large

demotions will be dominated by data transfer times,
3. How sensitive are the results to variations in SANsmall ones by array controller and host overheads. If
bandwidth? we assume that BEMOTE costs the same asREAD
. . . that hits in the array, and that clients demote a block for
4. How sensitive are the results to the relative sizes OEveryREAD, then we can approximate the cost of de-
the client and array caches? motions by doubling the latency of array hits. This is
an upper bound, since demotions transfer no data if they
abort, e.g., if the array already has the data cached. With
the inclusion of demotion costs,

5. Do demotions help when an array has multiple
clients?

The remainder of the paper is structured as follows. We
begin with a demonstration of the potential benefits of
exclusive caching using some simple examples. We then
explore how well it fares on more realistic workloads
captured from real systems, and show thatoTEdoes ~ We now use our model to explore some simple exam-

indeed achieve the hoped-for benefits. ples, settindla = 0.2 ms and; = 10 ms throughout this

o ) . section.
Multi-client exclusive caching represents a more chal-

lenging target, and we devote the remainder of the pape? 1 Random workloads

to an exploration of how this can be achieved—including

a new way of thinking about cache insertion policies. Consider first a workload with a spatially uniform distri-
After surveying related work, we end with our observa- bution of requests across some working set (also known
tions and conclusions. asrandon). We expect that a client large enough to hold

Tmean= 2Taha + (2Ta + Td) miss 3)
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Figure 2: Cumulative hit ratevs. effective cache size for a With @RAIDS array and a 1 Gbit/s FibreChannel SAN.

Zipf-like workload, with client and array caches of 84 each L .
and a working set size of 1288. The marker shows the addi- Sitivity analyses for how our demotion scheme responds
tional array hit rate achieved with exclusive caching. to variations in the client-array SAN bandwidth and rela-

tive client and array cache sizes. Sections 4 and 5 present
half of the working set would achievg = 50%. An ar-  our results for real-life workloads.
ray with inclusive caching duplicates the client contents,
and would achieve no additional hits, while an array with 3.1 ~ Evaluation environment: Pantheon

exclusive caching should achielig= 50%.
To evaluate our cache management schemes, we began

Equations 2 and 3 predict that the change from incluty ysing the Pantheon simulator [44], which includes
sive to exclusive caching would reduce the mean latencyajibrated disk models [33]. Although the Pantheon ar-
from 0.5(Ta+Ty) t0 Ty, i.€., from 5.1 ms to 0.2 ms. ray models have not been explicitly calibrated, Pantheon
has been used successfully in design studies of the HP
AutorAID disk array [45], so we have confidence in its

Even workloads that achieve high client hit rates mayPredictive powers.

benefit from exclusive caching. An example of such\ye configured Pantheon to modeRaip5 disk array
a workload is one with a Zipf-like distribution [49], connected to a single client over a 1 Gbit/s FibreChannel
which approximates many common access patterns: fnk, as shown in figure 3. For these experiments, we
few blocks are frequently accessed, others much less ofised a workload with 4B READS, and seT, = 0.2 ms;

ten. This is formalized as Setting the probablllty of athe Pantheon disk models ga’ﬂ@z 10 ms.

READ for thei™ block proportional to 1i%, wherea is _
a scaling constant commonly set to 1. The Pantheon cache models are extremely detailed,

keeping track of I/O operations in 256 byte size units
Consider the cumulative hit rates. effective cache size in order to model contention effects. Unfortunately, this
graph shown in figure 2 for the Zipf workload with a requires large amounts of memory, and restricted us to
128 mB working set. A client with a 64vB cache experiments with only 6#18 caches. With a 4B cache
will achievehc = 91%. No additional hits would oc- plock size, this means that the client and array caches
cur in the array with a 6418 cache and traditional, fully \yere restricted tdl. = N5 = 16384 blocks in size.
inclusive caching. Exclusive caching would allow the o )
same array to achieve an incremetfital= 9%; because To gllmlnate resource—conte'n'glon effects for our syn-
T, >> Ta, even small decreases in the miss rate carfntic workload results, we finished earBAD b:afore
yield large speedups. Equations 2 and 3 predict meantarting the next.. In each gxpenmgnt, we first “warmed
READ latencies of 0.918 ms and 0.036 ms for inclu- UP" the caches with a working-set size serR@iADS; the

sive and exclusive caching respectively—an impressiv@€rformance of theseeADs is not included in the re-
25.5x speedup. sults. Latency variances were all below 1%.

2.2 Zipfworkloads

Our chief metric for evaluating the exclusive caching
3 Single-client synthetic workloads schemes is the mean latency akBAD at the client; we

also report on the array cache hit rate. For each result,
In this section, we explore the effects of exclusivewe present both absolute latencies argpaedupatio,
caching using simulation experiments with syntheticwhich is the baselineM\ONE-LRU) mean latency divided
workloads. Our goal is to confirm the intuitive argu- by the mean latency for the current experiment. Al-
ments-presented.in.section.2;-as.well as to conduct sethough the difficulties of modeling partially closed-loop
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[Workload| Client] NONE-LRU[ DEMOTE-LRU| DEMOTE] cost of a demotion. In contrastpNE-LRU got fewer ar-

RANDOM | 50% | 8% 21% 46% ray hits (table 2), and its curve has a significantly smaller
SEQ 0% 0% 0% 100% . C .
ZIPE 86% 206 1% 9% jump at 0.2 ms, which is the cost of an array cache hit

without a demotion.

Table 2: Client and array cache hit rates for single-client syn-

thetic workloads. The client hit rates are the same for all the3.3 TheSEQ synthetic workload

demotion variants, and can be added to the array hit rates to get

the total cache hit rates. Sequential accesses are common in scientific, decision-
support and data-mining workloads. To evaluate the
benefit of exclusive caching for such workloads, we

|W°rk'°ad|NZ“ﬁLR“|3ZZMOTE('1LZ;)|OGZEMOIYE&)| simulatedREADs of sequential blocks from a work-

RANDOM . ms . ms . . ms . H H

SEQ 167ms |1.91ms (0.8%)|0.48 ms (3.5) ing s_et 0f Nseq contiguous blocks, chosen _so that_ the
ZIPF 1.41ms [1.19ms (1.18)]0.85 ms (1.%) working set would fully occupy the combined client

and array cached\; = N; = 16384, andNseq= N¢ +

Table 3: MeanREAD latencies and speedups OWEDINE-LRU Na — 1 = 32767 blocks (the-1 accounts for double-

for single-client synthetic workloads. caching of the most recently read block). We issheg
warm-upREADS, followed by 10x Nseqtimed one-block

application behavior are considerable [16], a purely I/O-READs.

bound workload should see its execution time reduce

by the speedup ratio %e expected that at the end of the warm-up period,

the client would contain the blocks in the second half

of the sequence, and an array under exclusive caching

would contain the blocks in the first half. Thus, with

For this test, the workload consisted of one-ble&laDs DEMOTE, all subsequ(_eszADs should hitin the array.
On the other hand, witRONE-LRU andDEMOTE-LRU,

uniformly selected from a working set &f, blocks. .
rand = . we expected that the array would always contain the
Such random access patterns are common in on-line A ;
X ; Same blocks as the client; neither the client nor the ar-
transaction-processing workloads (e.g., TPC-C, a clas: .
. ray would have the next block in the sequence, and all

sic oLTP benchmark [38]). .
READS would miss.

We set the working set size to the sum of the client andA ain. the results in table 2 validate our expectations
array cache sizesN; = N, = 16384,N_, = 32768 93" P '

. Although noREADs ever hit in the client, they all hit in
blocks, and issuedll,,,; warm-uprREADS, followed by .
. ran the array wittbEMOTE. The mean latency fasEMOTE-
10 xN,,,q imedREADS.

-LRU was higher than foNONE-LRU because it point-
We expected that the client would achigwe= 50%. lessly demoted blocks that the array discarded before
Inclusive caching would result in no cache hits at thethey were reused. Although aEADS missed in both
array, while exclusive caching should achieve an addicaches wittNONE-LRU andDEMOTE-LRU, the mean la-
tional hy = 50%, yielding a dramatic improvement in tencies of 1.67 ms and 1.91 ms respectively were less
mean latency. than the random-access disk latefigythanks to read-

The results in table 2 validate our expectations. Theaheald in the disk drive [33]

client achieved a 50% hit rate for both inclusive and ex-The cumulative latency graph in figure 4 further demon-
clusive caching, and the array witEMOTE achieved an  strates the benefit obEMOTE over NONE-LRU: all
additional 46% hit rate. 4% a{EADs still missed with READs with DEMOTE had a latency of 0.4 ms (the cost
DEMOTE, because the warm-upeADs did completely  of an array hit plus a demotion), while aEADs with

fill the client cache. Also, sincBONE-LRU is not fully =~ NONE-LRU had latencies between 1.03 ms (the cost of a
inclusive (as previous studies demonstrate [15]), the areisk access with read-ahead caching) and 10 ms (the disk
ray with NONE-LRU still achieved an 8% hit rate. latency T,, incurred when theREAD sequence wraps
around). OverallDEMOTE achieved a 3.5 speedup
OVEerNONE-LRU, as seen in table 3.

3.2 TherRANDOM synthetic workload

As predicted in section 1.3EMOTE-LRU did not per-
form as well aDEMOTE. DEMOTE-LRU only achieved
ha = 21%, while DEMOTE achievedhy = 46%, which

was a 7.% speedup OveRONE-LRU, as seen in table 3. 3.4 ThezIPF synthetic workload

Figure 4 compares the cumulative latencies achieve@ur Zipf workload sentREADs from a set ofN

with NONE-LRU andDEMOTE. For DEMOTE, the jump  blocks, with N, . = 1.5(Nc 4+ Na), so for No = Na
at.0.4.ms.corresponds.to.the.cost.of an array hit plus the- 16384,NZipf = 49152. This resulted in three equal
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Cumul. READ frac. vs. mean latency - RANDOM Cumul. READ frac. vs. mean latency - SEQ Cumul. READ frac. vs. mean latency - ZIPF
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Figure 4: CumulativeREAD fractionvs. meanrReAD latency for theRANDOM, SEQ, andziPF workloads withNONE-LRU and
DEMOTE.

. . . M | . idth - RANDOM
size sets of\,, (/3 blocks: Z, for the most active third ean latency vs. bandwidt ©

(which received 90% of the accesseg),for the next
most active (6% of the accesses), @dor the least ac- L
tive (the remaining 4% of the accesses). We issl\lgg \
warm-upREADS, followed by 10x N timedREADs.

154

\ —>— NONE-LRU
- - DEMOTE

.
1S
I

We expected that at the end of the warm-up set, the client
cache would be mostly filled with blocks frod, with

the highest request probabilities, and that an array under
exclusive caching would be mostly filled with the blocks .
from Z, with the next highest probabilities. With our 0
test workload, exclusive caching schemes should thus oo Bendwicth (Gbit) 0
achieveh; = 90% andh; = 6% in steady state. On the

other hand, the more inclusive caching schenesve- Mean latency vs. bandwidth - ZIPF
-LRU andDEMOTE-LRU) would simply populate the ar- 53
ray cache with the most-recently read blocks, which

would be mostly fronZ,, and thus achieve a lower array Y
hit rateh,.

Mean latency (ms)

—>— NONE-LRU
\ - -e—- DEMOTE

The results in table 2 validate our expectations. The
client always achieveti; = 86% (slightly lower than
the anticipated 90% due to an incomplete warm-up). But
there was a big difference imy: DEMOTE achieved 9%,
while NONE-LRU achieved only 2%.

Mean latency (ms)

0.01 0.1 1 10

The cumulative latency graph in figure 4 supports this: Bandwidth (Gbit/s)
as with RANDOM, the curve forbDEMOTE has a much
larger jump at 0.4 ms (the cost of an array hit plus a
demotion) tharNONE-LRU does at 0.2 ms (the cost of
an array hit alone). OveralheMOTE achieved a 1.¥
speedup OveKONE-LRU, as seen in table 3. This may The more this expectation is violated (i.e., as SAN la-
seem surprising given the modest increase in array hitency increases), the less benefit we expect to see—
rate, but is more readily understandable when viewed apossibly to the point where demotions are not worth
a decrease in the overall miss rate from 12% to 5%. doing. To explore this effect, we conducted a sensi-

i o ] tivity analysis, using Pantheon to explore the effects of
3.5 SAN bandwidth sensitivity analysis varying the simulated SAN bandwidth from 10 Gbit/s to

. . . . . 10 Mbit/s on theNONE-LRU andDEMOTE schemes.
Exclusive caching using demotions relies on a low-

latency, high-bandwidth SAN to allow the array cache toOur experiments validated our expectations. Figure 5
perform.as-a-low-latency-extension of the client cacheshows that at very low effective SAN bandwidths (less

Figure 5: Mean READ latencyvs. SAN bandwidth for the
RANDOM andzIPF workloads.
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Mean latency vs. array cache size - RANDOM
64 .

than 20—30 Mbit/s)NONE-LRU outperformedEMOTE,

but bDEMOTE won as soon as the bandwidth rose above
this threshold. The results farANDOM and zIPF are
similar, except that the gap between thenE-LRU and
DEMOTE curves for high-bandwidth networks is smaller
for zIPF since the increase in array hit rate (and the re-
sultant speedup) was smaller.

Mean latency (ms)

) _ _ —x— NONE-LRU
3.6 Evaluation environment: fscachesim -+ DEMOTE %

0 T

For subsequent experiments, we required a simulator ca- T o
pable of modeling multi-gigabyte caches, which was be- Array cache size (MB)
yond the abilities of Pantheon. To this end, we devel- Mean latency vs. array cache size - ZIPF
oped a simulator calleécachesim that only tracks 20+ ;

the client and array cache contents, omitting detailed
disk and SAN latency measurementscachesim is
simpler than Pantheon, but its predictive effects for our
study are similar: we repeated the experiments described
in sections 3.2 and 3.4 with identical workloads, and
confirmed that the client and array hit rates matched ex-
actly. We usedscachesim for all the experimental
work described in the remainder of this paper.

Mean latency (ms)

057 —— NONE-LRU
-<+--DEMOTE

0.0

3.7 Cache size sensitivity analysis Array cache size (M)

In the result§ reported so far, we have assumed thf':lt theigure 6: Mean READ latencyvs. array cache size for the
client cache is the same size as the array cache. This seganpom andzipF workloads. The client cache size was fixed
tion reports on what happens if we relax this assumptionat 64mB. The 64mB size is marked with a dotted line.

using a 64vB client cache an@ANDOM andzIPF.

We expected that an array with tN®ONE-LRU inclusive [Workload [ Date[ Capacity] Cachd Clients| Length [Warm-uf  1/Os]
CELLO99 [1999| 300GB| 2GB 1month| 1lday [61.9M

scheme would provide no reduction in mean latency un-| ;. | 5208  — 22 hourd 30min | 3.7 M
til its cache size exceeds that of the client, while one with |HTTPD 1995 0.5GB| — 24hours  1hr | 11M
theDEMOTE exclusive scheme would provide reductions | S | 3000| 220000 | 320 1hour| omin| 524
in mean latency for any cache size until the working set

fits in the aggregate of the client and array caches. Table 4: Real-life workload data, with date, storage capacity,

L . . array cache size, client count, trace duration, and I/O count.
The results in figure 6 confirm our expectations. Max-‘Warm_up’ is the fraction of the trace used to pre-load the
imum benefit occurs when the two caches are of equataches in our experiments. Fpe2 andHTTPD, working set
size, butbEMOTE provides benefits over roughly a 10:1 size instead of capacity is shown. ‘—’ are unknown entries.
ratio of cache sizes on either side of the equal-size case.

4 Single-client real-life workloads

o~

3.8 Summary

Having demonstrated the benefits of demotion-based ex-
clusive caching for synthetic workloads, we now eval-
uate its benefits for real-life workloads, in the form of
Yaces taken from the running systems shown in table 4.

The synthetic workload results show thz¢MOTE of-
fers significant potential benefits: 1.7-%.Speedups
are hard to ignore. Better yet, these benefits are mostl
insensitive to variations in SAN bandwidth and only
moderately sensitive to the client:array cache size ratio.Some of the traces available to us are somewhat old, and
cache sizes considered impressive then are small today.

. L Given this, we set the cache sizes in our experiments

performeddEMOTE, we did not consider it further. We : :

: . o L ommensurate with the time-frame and scale of the sys-
also investigated schemes with different combinations of .

. em from which the traces were taken.

LRU and most-recently-use(MRU) replacement poli-
cies at the client and array in conjunction with demo-We usedscachesim to simulate a system model sim-
tions, and found that none performed as wellas ilar to the one in figure 3, with cache sizes scaled to
MOTE. reflect the data in table 4. We used equations 2 and 3

Since our results showed theREMOTE-LRU never out-
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[Workload] Client] NONE-LRU | DEMOTE |
CELLO99| 54% [1%|2.34 mg13%]|1.83 ms (1.28)
DB2 4% |0%|5.01 m933%]|3.57 ms (1.4&)
HTTPD 86% | 3% 0.53 mg10%)0.24 ms (2.28&)

Table 5: Client and array hit rates and mean latencies for
single-client real-life workloads. Client hit rates are the same
for all schemes. Latencies are computed using equations 2 and
3withTa = 0.2 ms and; = 5 ms. Speedups f@EMOTE over
NONE-LRU are also shown.

with T, = 0.2 ms,T; = 5 ms to convert cache hit rates
into mean latency predictions. This disk latency is more
aggressive than that obtained from Pantheon, to reflect
the improvements in disk performance seen in the more
recent systems. We further assumed that there was suf-
ficient SAN bandwidth to avoid contention, and set the
cost of an aborted demotion to 0.16 ms (the cost of SAN
controller overheads without an actual data transfer).

As before, our chief metric of evaluation is the im-
provement in the mean latency ofR&AD achieved by
demotion-based exclusive caching schemes.

4.1 TheceLLO99 real-life workload

TheceLLO99 workload comprises a trace of every disk
I/0 access for the month of April 1999 from an HP 9000
K570 server with 4cpus, about 28 of main memory,
two HP AutrRAID arrays and 18 directly connected disk
drives. The system ran a general time-sharing load un-
der HP-UX 10.20; it is the successor to theLLO sys-

tem Ruemmler and Wilkes describe in their analysis of
UNIX disk access patterns [32]. In our experiments, we
simulated 2B client and array caches.

Figure 7 suggests that that switching from inclusive to
exclusive caching, with the consequent doubling of ef-
fective cache size from 2B to 4 GB, should yield a
noticeable increase in array hit rate. The results shown
in table 5 demonstrate this: usimgEMOTE achieved

ha = 13% (compared tdhy; =1% with NONE-LRU),
yielding a 1.28 speedup—solely from changing the
way the array cache is managed.

4.2 ThebDB2 real-life workload

The DB2 trace-based workload was generated by an
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eight-node IBM SP2 system running an IBM DB2 Figure 7: Cumulative hit rates.cache size graphs for single-
database application that performed join, set and aggreslient real-life workloads.

gation operations on a 5@8 data set. Uysadt al. used

this trace in their study of I/O on parallel machines [40]. thetic workloads. The graph feB2 in figure 7 suggests

The eight client nodes accessed disjoint sections of the
database; for the single-client workload experiment we
combined all these access streams into one.

that a single 4B cache would achieve about a 37% hit
rate, but that a split cache with@s at each of the client
and array would achieve almost no hits at all with in-

clusive caching; thuspeMOTE should do much better
DB2 exhibits a behavior between the sequential and ranthanNONE-LRU. The results shown in table 5 bear this
dem.workloadstyles.seen-intisEQ.andRANDOM syn-  out: DEMOTE achieved a 33% array hit rate, and a 1x40
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|Array sizg Client]  NONE-LRU | DEMOTE | provement in latency until the array cache size reached

2GB | 23% 0% 4.01 ms 1%14.13 ms (0.9%) 32GB, at which point we saw a tiny (1%) improvement.
16GB | 23% |0%|4.01 ms (1.08)| 6% [3.86 ms (1.04)
3268 | 23% |1%|3.97 ms (1.0k)|13%|3.54 ms (1.13) With a 2GB array cacheDEMOTE yielded a slight slow-

down (0.9% speedup), because it paid the cost of do-

Table 6: Client and array hit rates and mean latencies foring demotions without increasing the array cache hit
single-clientTpc-H for different array caches. Client hit rates rate significantly. HowevepEMOTE obtained a 1.04

and cache sizes (328) are the same for all schemes. Laten- speedup at 168, and a 1.1% speedup at 328, while

cies are computed using equations 2 and 3 With- 0.2 ms  the inclusive caching scheme showed no benefits. This
andT, = 5ms. Speedups are with respect toGearray cache  (ata confirms that cache reuse was not a major factor in
Wwith NONE-LRU. this workload, but indicates that the exclusive caching
speedup OVERONE-LRU. scheme took advantage of what reuse there was.

4.3 TheHTTPD real-life workload 4.5 Summary

The HTTPD workload was generated by a seven-noderpe results from real-life workloads support our earlier
IBM SP2 parallel web server [22] serving a 528 data  conclusions: apart from thepc-H baseline, which ex-
set. Uysalet al. also used this trace in their study [40]. perienced a small 0.97 slowdown due to the cost of

Again, we combined the client streams into one. non-beneficial demotions, we achieved up to a 2.20
HTTPD has similar characteristics tiPF. A single  SPeedup.
256Mm8 cache would hold the entire active working set; we find these results quite gratifying, given that ex-

we elected to perform the experiment with 188 of  ensjve previous research on cache systems enthusias-

cache split equally between the client and the array injca|ly reports performance improvements of a few per-
order to obtain more interesting results. An aggregatg.ant (e.g., a-1.12x speedup).

cache of this size should achidwe+ hy ~ 95% accord-
ing to the graph in figure 7, with the client achieving -
« ~ 85%, and an array under exclusive caching the re? Multi-client systems

maininghy =~ 10%. - : L
9ha ° Multi-client systems introduce a new complication: the

Table 5 shows that the expected benefit indeed occursharing of data between clients. Note that we are delib-
DEMOTE achieved a 10% array hit rate, and an impres-erately not trying to achieve client-memory sharing, in

sive 2.2« speedup OVENONE-LRU. the style of protocols such as GMS [13, 42]. One benefit
) is that our scheme does not need to maintain a directory
4.4 TheTpPC-H real-life workload of which clients are caching which blocks.

The TPC-H workload is a 1-hour portion of a 39-hour Having multiple clients cache the same block does not
trace of a system that performed an audited run [18]tself raise problems (we assume that the clients wish
of the TPC-H database benchmark [37]. This sys-to access the data, or they would not have read it), but
tem illustrates high-end commercial decision-supportxploiting the array cache as a shared resource does: it
systems: it comprised an &u (550MHz PA-RISC) may no longer be a good idea to discard a recently read
HP 9000 N4000 server with 328 of main memory and block from the array cache as soon as it has been sent
2.1 718 of storage capacity, on 124 disks spread acros$o a client. To help reason about this, we consider two
3 arrays (with 1.6GB of aggregate cache) and 4 non- boundary cases here. Of course, real workloads show
redundant disk trays. The host computer was alreadypehavior between these extremes.

at its maximum-memory configuration in these tests, scbisjoint workloads The clients each issuReADs for

adding additional host memory was not an option. Givennon-overla ed parts of the agareqgate working set. The
that this was a decision-support system, we expected to bpedp gareg g set.

. : . ; .. READS appear to the array as if one client had issued
find a great deal of sequential traffic, and relatively lit- )
. them, from a cache as large as the aggregate of the client
tle cache reuse. Our expectations are borne out by the L . . .
caches. To determine if exclusive caching will help, we
results. . ; . .
use the cumulative hit rates. cache size graph to esti-
In our TPC-H experiments, we used a k& block size, mate the array hit rate as if a single client had issued all
a 32GB client cache, and a@s array cache as the base- READS, as in section 2.
line, and explored the effects of changing the array cach

size up to 32:8. Table 6 shows the results. pConJomt workloads The clients issue exactly the same

READ requests in the same order at the exact same time.
The traditionalinclusive caching.scheme showed no imif we arbitrarily designate the first client to issue an 1/0
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as the leader, and the others as followers, we see that Read block Demoted block

READS that hit in the leader also will hit in the followers. - )
TheREADSs appear to the array as if one client had issued g
them from a cache as large as an individual clientcache. - - - - 22 --. oo oo -o.

1
To determine if the leader will benefit from exclusive |
caching, we use the cumulative hit rate. cache size |
graph to estimate the array hit rate as if the leader had :
issued alREADS, as in section 2. !
1
1
1

To determine if the followers will benefit from exclu-
sive caching, we observe that aADs that miss forthe  + __7®¢ o+ — |
leader in the array will also cause the followers to stall, Ghosts
waiting for that block to be read into the array cache. As

soon as it arrives there, it will be sent to the leader, andrigure 8: Operation of read and demoted ghost caches in con-
then all the followers, before it is discarded. That is, thejunction with the array cache. The array inserts the metadata of

followers will see the same performance as the leader. incoming read (demoted) blocks into the corresponding ghost,
and the data into the cache. The cache is divided into segments

In systems that employ demotion, the followers wasteys ejther uniform or exponentially-growing size. The array se-
time demoting blocks that the leader has already detects the segment into which to insert the incoming read (de-
moted. Fortunately, these demotions will be relativelymoted) block based on the hit count in the corresponding ghost.
cheap because they need not transfer any data.

5.1 Adaptive cache insertion policies protectedsegments, each managed in LRU fashion. The

Our initial results using the simple demotion-based ex-oray puts newly inserted blocks (read and demoted) at

. ; . -~ .~ the tail of the probationary segment, and moves them to

clusive caching scheme described above to mqu-chenE . .
. . he tail of the protected segment if a subsequestD
systems were mixed. At first, we evaluatedNE-LRU .
. - o hits them. The array moves blocks from the head of the

andDEMOTE in a multi-client system similar to the one : :
shown in figure 3, with the single client shown in that p'rotected segment o the tail of the probafuonaryone, and
figure simply repla{ced by clients, each with AN of the ejects blocks from the head of the probationary segment.

cache memory of the single client. As expected, work-SLRU improved performance somewhat, but the opti-
loads in which clients shared few or no blocks (disjoint mal size of the protected segment varied greatly with the
workloads) benefitted fromEMOTE. workload: the best size was either very small (less than
8% of the total), or quite large (over 50%). These results

Unfortunately, workloads in which clients shared blocks .
were less robust than we desired.

performed worse wittDEMOTE than with NONE-LRU,

because shared workloads are not conjoint in practiceDur second insight is that the array can treat the LRU
clients do not typicallyReaD the same blocks in the queue as a continuum, rather than as a pair of segments:
same order at the same time. InsteadfaD for block  inserting a block near the head causes that block to have
X by one client may be followed by severataDs for  a shorter expected lifetime in the queue than inserting it
other blocks before a secorrEAD for X by another near the tail. We can then use different insertion points
client. Recall that withbEMOTE the array puts blocks for demoted blocks and disk-read blocks. (Pome

read from disk at the head of the LRU queue, i.e., INnMOTE is an extreme instance that only uses the ends of
MRU order. Thus, the array is likely to ejestbefore  the LRU queue, and SLRU is an instance where the in-
theREAD from the later client. sertion point is a fixed distance down the LRU queue.)

We made an early design decision to avoid the complex©ur experience with SLRU suggested that the array
ities of schemes that require the array to track whichshould select the insertion poirddaptivelyin response

clients had which blocks and request copies back fronto workload characteristics instead of selecting them
them—we wanted to keep the client-to-array interactionstatically. For example, the array should insert demoted
as simple, and as close to standaak|, as possible. blocks closer to the tail of its LRU queue than disk-read

Our first insight was that the array should reserve a porpIOCkS If subsequerReADs hit demoted blocks more of-

tion of its cache to keep blocks recently read from diskten' To supportthis, we |_mplementgtiost cacheatthe

. o . array for demoted and disk-read blocks.

for a while”, in case another client requests them. To

achieve this, we experimented with a segmented LRUA ghost cache behaves like a real cache except that
(SLRU)-array-cache. [21]—one.withrobationaryand it only keeps cache metadata, enabling it to simulate
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Cumul. hit rate vs. cache size - DB2 clients
1.0+

the behavior of a real cache using much less memory.

We used a pair of ghost caches to simulate the perfor- *2::22:3 /
mance of hypothetical array caches that only inserted 0g{ ---Client3 Y
blocks from a particular source—either demotions or @ ff: g::gﬂ:g g
disk reads. Just like the real cache, each ghost cache S 01—~ Client6
was updated oREADS to track hits and execute its LRU = et

H 0.4
policy. §
We used the ghost caches to provide information about 02+ P
which insertion sources are the more likely to insert i
blocks that are productive to cache, and hence where in 00 e
the real cache future insertions from this source should Cache size (MB)

go, as shown in figure 8.) This was done by calculat-
ing the insertion point in the real cache from the relative
hit counts of the ghost caches. To do so, we assigned

the value 0 to represent the head of the real array LRU [Client [T 1] 2[ 3] 4] 5[ 6] 7] §]
queue, and the value 1 to the tail; the insertion points for IMean IatHN(;NZE(;i_Ri 00] 462 4.66] 4:66] 4.68] 4.566] 466|
demoted and disk-read blocks were given by the ratio of = ' ' ' ' ' ' '

Figure 9: Cumulative hit ratess.cache size fobs2 clients.

. . . DEMOTE (mean speedup 1.5Q
the hit rates seen by their respective ghost caches to the[Meanlat] 1.30‘ 4712 3.44] 3.41] 339 3.38 3.40] 3.38
total hit rate across all ghOSt caches. Speedup||4.00x | 0.97x | 1.34x | 1.37x | 1.38x | 1.39x | 1.37x | 1.38x
DEMOTE-ADAPT-UNI (mean speedup 1.2}
. . . . Meanlat]] 2.15] 4.12[ 3.57] 3.53] 4.09] 4.07] 4.07] 4.05
To make insertion at an arbitrary point more computa- | speedup 2.42><‘0.97>< 1.20¢ | 1.32¢ | 1.14x | 1.15¢ | 1.16x | 1.15¢
tionally tractable, we approximated this by dividing the DEMOTE-ADAPT-EXP (mean speedup 1.33
. - Meanlat]] 1.79] 4.12] 3.55] 3.51] 3.94] 4.05] 3.92] 3.99
real array LRU queue into a fixed number of segments | g oy, 2.91><‘0.97>< 1.30x | 1.33« | 1.18¢ | 1.16x | 1.1 | 1.17x

Nsegs(10 in our experiments), multiplying the calculated
insertion point byNsegs and inserting the block at the tail

Table 7: Per-client mean latencies (in ms) for multi-client
of that segment.

DB2. Latencies are computed using equations 2 and 3 with
We experimented with uniform segments, and with ex-Ta = 0.2 ms andl; = 5 ms. Speedups overoNE-LRU, and
ponential segments (each segment was twice the size {Hpe geometric mean of all client speedups, are also shown.
the preceding one, the smallest being at the head of thgnd we expected from figure 9 that exclusive caching
array LRU queue). The same segment-index calculatiolvould obtain a significantincrease in array hit rates, with
was used for both schemes, causing the scheme with seg-corresponding reduction in mean latency.

ments of exponential size to give significantly shorter

lifetimes to blocks predicted to be less popular. Our results shown in table 7 agreeeMOTE achieved an

impressive 1.58 speedup oveKONE-LRU. DEMOTE-
We designated the combination of demotions with ghost ApAPT-UNI and DEMOTE-ADAPT-EXP achieved only
caches and uniform segments at the arrap@a®OTE-  1.27-1.3% speedups, since they were more likely to
-ADAPT-UNI, and that of demotions with ghost cacheskeep disk-read blocks in the cache, reducing the cache
and exponential segmentsBBEMOTE-ADAPT-EXP. We  available for demoted blocks, and thus making the cache
then re-ran the experiments for which we had data foless effective for this workload.
multiple clients, but separated out the individual clients.

5.3 The multi-client HTTPD workload
5.2 The multi-client b2 workload

We returned to the originadlTTPD workload, and sepa-
We used the sameB2 workload described in sec- rated the original clients. We gaveMB to each client
tion 4.2, but with the eight clients kept separate. Eactcache, and kept the 648 array cache as before.
client had a 256vuB cache, so the aggregate of client

caches remained at@. The array had 8 of cache. Figure 10 indicates that the per-client workloads are

somewhat similar to theiPF synthetic workload. As
EachpB2 client accesses disjoint parts of the databaseshown in section 3.4, disk-read blocks for such work-
Given our qualitative analysis of disjoint workloads, andloads will in general have low probabilities of being
the speedup fopB2 in a single-client system witbEe- reused, while demoted blocks will have higher proba-
MOTE, we expected to obtain speedups in this multi-bilities. On the other hand, as shown by the histogram
client system. If we assume that each client uses one table 8, clients share a high proportion of blocks, and
eighth (256mB) of the array cache, then each client hastend to exhibit conjoint workload behavior. Thus, while
an-aggregate.of 51@B.to-hold.its-part of the database, the array should discard disk-read blocks more quickly
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Cumul. hit rate vs. cache size - HTTPD clients
1.0+
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Figure 10: Cumulative hit ratevs. cache size foHTTPD
clients.

[No. clientd[] 1] 2] 3] 4] 5] 6] 7]
No. blocks| 13173 8282 5371| 5570| 6934| 24251] 5280
% of total 19%| 12%| 8%| 8%| 10%| 35%| 8%

Table 8: Histogram showing the number of blocks shared by

X HTTPD clients, wherex ranges from 1 to 7 clients.

[Client | 1] 2] 3] 4] 5] 6] 7]
[ [[NONE-LRU |
[Meanlat]| 0.90] 0.83] 0.82] 0.89] 0.79] 0.76] 0.19|

DEMOTE (mean slowdown 0.55)
Mean lat|| 1.50[ 1.41] 1.44| 1.48| 1.43] 1.33| 0.46
Speedup 0.60><‘0.59><‘0.57>< 0.60><‘0.55>< 0.57x | 0.41x
DEMOTE-ADAPT-UNI (mean slowdown 0.92)
Mean lat]| 0.99] 0.92] 0.91] 0.98] 0.87] 0.86
Speedup|| 0.91x ‘0.90>< ‘0.90>< ‘0.91>< ‘0.90>< ‘0.89>< ‘
DEMOTE-ADAPT-EXP (mean speedup 1.19
Mean lat]| 0.81] 0.73] 0.74] 0.79] 0.68] 0.67
Speedup||1.12x |1.13x |1.10x | 1.13x | 1.16x | 1.13x

0.20]
0.94x

0.12
1.52x

Cumul. hit rate vs. cache size - OPENMAIL clients
1.0+
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Figure 11: Cumulative hit ratess.cache size foOPENMAIL.

[Client ] 1] 2] 3] 4] 5] 6]
[ [[NONE-LRU |
[Meanlat]| 2.96] 4.52] 4.54] 4.47] 1.79 1.78
DEMOTE (mean speedup 1.3§
Mean lat{| 2.32| 4.08 4.27| 4.35 1.27 1.67
Speedup||1.28x |1.11x | 1.06x [1.03x |1.41x | 1.07x
DEMOTE-ADAPT-UNI (mean speedup 1.67
Mean lat|| 2.66| 4.34| 4.42] 4.46| 1.44 1.79
Speedup||1.11x | 1.04x | 1.03x [ 1.00x | 1.24x | 0.99x
DEMOTE-ADAPT-EXP (mean slowdown 0.88)
Mean lat{| 3.03| 4.60] 4.60| 4.54] 2.53 2.47
Speedup|| 0.97x | 0.98x O.99><‘0.98><‘0.71>< 0.72x

Table 10: Per-client mean latencies (in ms) f@PEN-
MAIL. Latencies are computed using equations 2 and 3 with
Ta = 0.2 ms andly = 5 ms. Speedups OvV&lONE-LRU, and

the geometric mean of all client speedups, are also shown.

HP 9000 K580 servers running HP-UX 10.20, each with

Table 9: Per-client mean latencies (in ms) for multi-client 6 CPUS, 2GB of memory, and Bcslinterface Ca}rds- Th?
HTTPD. Latencies are computed using equations 2 and 3 witfservers were attached to four EMC Symmetrix 3700 disk

Ta = 0.2 ms andly = 5 ms. Speedups OvV&lONE-LRU, and

the geometric mean of all client speedups, are also shown.

arrays. At the time of the trace, the servers were experi-
encing some load imbalances, and one was I/O bound.

than demoted blocks, it should not discard them immeFigure 11 suggests that@ client caches would hold

diately.

Given this analysis, we expect&itEMOTE to post less

the entire working set for all but two clients. To obtain
more interesting results, we simulated six clients with

impressive results than adaptive schemes, and indeed %GB caches connected to an array with a®cache.

did, as shown in table 9: a 0.55slowdown in mean
latency ovemONE-LRU. On the other handyEMOTE-
-ADAPT-EXP achieved a 1.18 speedup. DEMOTE-
-ADAPT-UNI achieved a 0.9% slowdown, which we

OPENMAIL is a disjoint workload, and thus should ob-
tain speedups from exclusive caching. If we assume that
each client uses a sixth @) of the array cache, then
each client has an aggregate o682 to hold its work-

attribute to demoted blocks being much more Valuablqud, and we see from figure 11 that an array under ex-
than disk-read ones, but the cache with uniform segcjusive caching array should obtain a significantincrease
ments devoting too little of its space to them comparedn array cache hit rate, and a corresponding reduction in

to the one with exponential segments.

5.4 TheOpreENMAIL workload

mean latency.

As with DB2, our results (table 10) bear out our ex-
pectations:DEMOTE, which aggressively discards read

The OPENMAIL workload comes from a trace of a pro- blocks and holds demoted blocks in the array, obtained
duction e-mail system running the HP OpenMail appli-a 1.15«< speedup OVENONE-LRU. DEMOTE-ADAPT-
cation for 25,700 users, 9,800 of whom were active dur-UNI andDEMOTE-ADAPT-EXP fared less well, yielding
ing-the-hour-long.trace-The.system consisted of sixa 1.07 speedup and 0.88slowdown respectively.
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55 Summary protocols [1, 20, 47] look at policies beyond LRU
and MRU. Previously, analyses of web request traces
The clear benefits from single-client workloads are not[z, 5, 8] showed the file popularity distributions to be
so easily repeated in the multi-client case. For largelyzjpf.|ike [49]. Itis possible that schemes tuned for these
disjoint workloads, such ass2 and OPENMAIL, the  \yorkloads will perform as well for the sequential or ran-
simple DEMOTE scheme does well, but it falls down gom access patterns found in file system workloads, but

when there is a large amount of data sharing. Oy comprehensive evaluation of them is outside the scope
the other hand, the adaptive demotion schemes do Wegs this paper. In addition, web caching, with its poten-

when simple>EmMOTE fails, which suggests that a mech- a1y millions of clients, is targeted at a very different
anism to switch between the two may be helpful. environment than our work.

Overall, our results suggests that even when demotionpeer-to-peer cooperative caching studies are relevant to
based schemes seem notto be ideal, it is usually possiblgr multi-client case. In the “direct client coopera-

to find a setting where performance is improved. In thetjion” model [9], active clients offload excess blocks onto
enterprise environments we target, such tuning is an &xgle peers. No inter-client sharing occurs—cooperation

pected part of bringing a system into production. is simply a way to exploit otherwise unused memory.
The GMS global memory management project consid-
6 Related work ers finding the nodes with idle memory [13, 42]. Coop-

erating nodes use approximate knowledge of the global
The literature on caching in storage systems is large anghemory state to make caching and ejection decisions
rich, so we only cite a few representative samples. Muchhat benefit a page-faulting client and the whole cluster.
of it focuses on predicting the performance of an exist- . -
ing cache hierarchy [6, 24, 35, 34], describing existingperhaps the closest work to ours in spirit is a global
/0 systems [17, 25, 39], and determining when to flushMemory management protocol developed for database

write-back data to disk [21, 26, 41]. Real workloads con-management systems [14]. Here, the database server

tinue to demonstrate that read caching has considerab$€PS a directory of pages in the aggregate cache. This

value in arrays, and that a small amount of non-volatiledirectory allows the server to forward a page request

memory greatly improves write performance [32, 39]. from one client to another that_ has the data, r_equest that
a client demote rather than discard the last in-memory

We are not the first to have observed the drawbackgopy of a page, and preferentially discard pages that

of inclusive caching. Muntzet al. [27, 28] show have already been sent to a client. We take a simpler

that intermediate-layer caches for file servers perfornapproach: we do not track which client has what block,

poorly, and much of the work on cache replacement aland thus cannot support inter-client transfers—but we

gorithms is motivated by this observation [21, 24, 30,need neither a directory nor major changes toshsi

48]. OurpEMOTE scheme, with alternative array cache protocol. We rely on a high-speed network to perform

replacement policies, is another such remedy. DEMOTE eagerly (rather than first check to see if it is

Choosing the correct cache replacement policy in an arVorthwhile) and we do not require a (potentially large)

ray can improve its performance [19, 21, 30, 35, 48]_data structure at the array t_o keep trac_k of what blocks

Some studies suggest using least-frequently-used [15€ Where. Lower complexity has a price: we are less

46] or frequency-based [30] replacement policies instea@?!€ t exploit block sharing between clients.

of LRU in file servers. MRU [23] or next-block pre-

diction [29] policies have been shown to provide better7 Conclusion

performance for sequential loads. LRU or clocking poli-

cies [10] can yield acceptable results for database Ioad%e be tudv with a simple idea: tha

for example, the IBM DB2 database system [36] imple- gan our study with a simpie idea. BMOTE
operation might make array caches more exclusive and

ments an augmented LRU-style policy. thus achieve better hit rates. Experiments with simple
Our DEMOTE operation can be viewed as a very sim- synthetic workloads support this hypothesis; moreover,
ple form of a client-controlled caching policy [7], which the benefits are reasonably resistant to reductions in
could be implemented using the “write to cache” opera-SAN bandwidth and variations in array cache size. Our
tion available on some arrays (e.g., those from IBM [3]). hypothesis is further supported by 1.04—-2x2peedups
The difference is that we provide no way for the client for most single-client real-life workloads we studied—
to control which blocks the array should replace, and weand these are significantly larger than several results for
trust the client to be well-behaved. other cache improvement algorithms.

Recent studies.of.cooperative World Wide Web cachingThe TPC-H system parameters show why making ar-
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ray caches more exclusive is important in large systems:[9]
cache memory for the client and arrays represented 32%
of the total system cost of $1.55 million [18]. The abil-

ity to take full advantage of such large investments is a
significant benefit; reducing their size is another. [10]

Using multiple clients complicates the story, and our re-
sults are less clear-cut in such systems. Although wélll
saw up to a 1.5 speedup with our exclusive caching
schemes, we incurred a slowdown with the simpie

. I 12]
MOTE scheme when clients shared significant parts 0{
the working set. Combining adaptive cache—insertion[l3]
algorithms with demotions yielded improvements for
these shared workloads, but penalized disjoint work-
loads. However, we believe that it would not be hard to
develop an automatic technique to switch between thesg4]
simple and adaptive modes.

In conclusion, we suggest that tbEMOTE scheme is  [15)
worth consideration by system designers and I/O archi-
tects, given our generally positive results. Better yet,
as SAN bandwidth and cache sizes increase, its beril6]
efits will likely increase, and not be wiped out by a
few months of processor, disk, or memory technology
progress. (7

(18]
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